Retina-driven dephosphorylation of the NR2A subunit correlates with faster NMDA receptor kinetics at developing retinocollicular synapses.
نویسندگان
چکیده
We describe a homeostatic mechanism that limits NMDA receptor currents in response to early light activation of a developing visual pathway. During the second postnatal week of rodent retinocollicular development, the Ca2+-activated phosphatase calcineurin (CaN) mediates a rapid, activity-induced shortening in the decay time of NMDA receptor (NMDAR) currents. We show that protein kinase A acts in opposition to CaN to maintain NMDAR currents with long decay times. The CaN-mediated change is coincident with the initial expression of the NMDAR subunit NR2A. Using NR2A knock-out mice and dialyzing neurons with a constitutively active CaN, we demonstrate that NR2A subunits are necessary for the effect of CaN on NMDAR current kinetics. In wild-type mice, Ser900 of NR2A, previously implicated in CaN-mediated glycine-independent desensitization, becomes chronically dephosphorylated by postnatal day 11 as NMDAR current decay times become faster. Pharmacologically disrupting early photoreceptor-driven activity in the retina eliminates the dephosphorylation of NR2A and prevents the shortening in NMDAR current decay time. These data suggest that the developmental onset of retinal activity increases CaN-mediated dephosphorylation of NR2A subunits newly incorporated into synaptic NMDARs of the superior colliculus, thereby providing a mechanism for the early and rapid reduction of NMDAR current decay time in visual neurons.
منابع مشابه
Development and subunit composition of synaptic NMDA receptors in the amygdala: NR2B synapses in the adult central amygdala.
NMDA receptors are well known to play an important role in synaptic development and plasticity. Functional NMDA receptors are heteromultimers thought to contain two NR1 subunits and two or three NR2 subunits. In central neurons, NMDA receptors at immature glutamatergic synapses contain NR2B subunits and are largely replaced by NR2A subunits with development. At mature synapses, NMDA receptors a...
متن کاملDevelopmental loss of miniature N-methyl-D-aspartate receptor currents in NR2A knockout mice.
The N-methyl-d-aspartate (NMDA) glutamate receptor (NMDAR), long implicated in developmental plasticity, shows decay time kinetics that shorten postnatally as NR2A subunits are added to the receptor. Neither the mechanism nor immediate effect of this change is known. We studied developing NMDAR currents by using visual neurons in slices from NR2A knockout (NR2AKO) and WT mice. Both strains show...
متن کاملPresynaptic control of subunit composition of NMDA receptors mediating synaptic plasticity.
Subunit composition of subsynaptic transmitter receptors is controlled presynaptically in the developing neuromuscular junction. To investigate presynaptic regulation of NMDA receptor subunit composition in the CNS, we co-cultured different types of hippocampal explants with dissociated target neurons. Postsynaptic NMDA receptors were studied using whole-cell patch-clamp recordings. After 1 wee...
متن کاملNR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex.
NMDA receptors play important roles in learning and memory and in sculpting neural connections during development. After the period of peak cortical plasticity, NMDA receptor-mediated EPSCs (NMDAR EPSCs) decrease in duration. A likely mechanism for this change in NMDA receptor properties is the molecular alteration of NMDA receptor structure by regulation of NMDA receptor subunit gene expressio...
متن کاملSwitching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development.
Switching of the NMDA receptor 2A (NR2A) and NR2B subunits at NMDA receptors is thought to underlie the functional changes that occur in NMDA receptor properties during the developmental epoch when neural plasticity is most pronounced. The cellular expression of NR2A and NR2B and the NR2 synaptic binding protein postsynaptic density-95 (PSD-95) was examined in the mouse somatosensory cortex and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 49 شماره
صفحات -
تاریخ انتشار 2004